科学家研究了定向含硼MFI型活化沸石对纯气体的渗透性以及对乙醇/水体系的分离选择性,使沸石在有效分离(去除)有害气体的应用方面拓宽了新的领域研究定向含硼MFI型活化沸石和原多孔玻璃基材对纯气体的渗透性以及对乙醇/水体系的分离选择性。
纯气体透过焙烧后的B-AL-ZSM-5活化沸石,H2,He,Ne,Ar,O2,CO2对N2的理想选择性分别为16.8,15.6,12.6,9.41,8.60,5.32,CO和SO2对N2的理想选择性分别为0.135和0.0179;O2对CO和SO2的理想选择性分别为63.7和480.2。这表明该类活化沸石对纯气体的透过不仅具有良好的理想选择性,而且可能为新型防毒面具提供一种很好的可选材料。
渗透气化实验表明,在测定温度范围内原多孔玻璃基材对3种不同浓度的乙醇/水体系几乎没有分离性能。焙烧后的B-Al-ZSM-5活化沸石对5%,50和95%(质量分数)乙醇(水体系的分离,水的分离系数分别为28.2,135.7和518.5,且温度均为303K。表明该MFI型活化沸石具有强的亲水性。
活化沸石催化剂在己内酰胺组成中的使用
己内酰胺的传统工艺采用有毒的羟胺及腐蚀性强的,且发生很多副产品硫酸铵。新开发的己内酰胺生产工艺是先将苯部分氢化为,然后在氢型ZSM-5沸石催化剂上水合为;脱氢为环已酮,再在钛硅分子筛(TS-1)催化剂上与H2O2和NH3反响生成肟;肟 Beckmann重排成为己内酰胺。
Eni chen公司于1995年和1996年开发了钛硅分子筛,并用于肟生产进程,替代了原有杂乱技术,其副产物O2和H2O对环境无害。在Beckmann重排进程中,传统工艺以为催化剂。日本住友公司研讨了以MFI结构沸石为催化剂的流化床连续生产工艺,其催化剂为全硅分子筛,反响床层温度为350℃。反响200h后,当肟转化率为99.6%时,己内酰胺选择性为95.7%若在流化床后边加一固定床,环已酮肟转化率可达99.9%以上。